45

В конус вписан шар радиуса r. Угол между образующей конуса и плоскостью основания…

13 июля 2023

В конус вписан шар радиуса r. Угол между образующей конуса и плоскостью основания равен альфа. Найдите боковую поверхность конуса.

категория: геометрия



72

Осевое сечение конуса представляет собой равнобедренный треугольник, основание которого АВ=2R. Где R радиус основания конуса. Стороны треугольника равны образующей конуса L. Шар проецируется на осевое сечение как окружность радиуса r с центром в точке О. Обозначим треугольник АВС, С-вершина. Проведем из О перпендикуляры ОК к АС и ОМ к ВС. Из равенства треугольников КОВ и МОВ видно, что ОВ-биссектриса угла СВА. Отсюда ВК=ОК/ (tgA/2). Или R=r/ (tgA/2). Где А-угол альфа. Далее СВ*cosА=ВК. Или L*cosA=r/ (tgA/2). Отсюда величина образующей конуса L=r/cos A*(tgA/2). Боковую поверхность конуса находим по формуле S=пи*R*L=пи*(r/tgA/2)*r/cosA*(tgA/2)=пи*r квадрат/cos A*(tgA/2) квадрат.

Знаете ответ?


Есть интересный вопрос? Задайте его нашему сообществу, у нас наверняка найдется ответ!
Делитесь опытом и знаниями, зарабатывайте награды и репутацию, заводите новых интересных друзей!
Задавайте интересные вопросы, давайте качественные ответы и зарабатывайте деньги. Подробнее...