34

Для каждого значения параметра а решить неравенство cos^2 (3x)+2a*sin (3x) -2a>a^2

07 октября 2024

Для каждого значения параметра а решить неравенство cos^2 (3x)+2a*sin (3x) -2a>a^2

категория: алгебра



50

cos^2 (3x)+2a*sin (3x) -2a>a^2,1-sin^2 (3x)+2a*sin (3x) -2a-a^2>0,-sin^2 (3x)+2a*sin (3x) -a^2-2a+1>0,sin^2 (3x) -2a*sin (3x)+a^2+2a-1<0,sin (3x)=t,t^2-2a*t+a^2+2a-1<0,t^2-2a*t+a^2+2a-1=0,D1=(-a) ^2-1*(a^2+2a-1)=a^2-a^2-2a+1=-2a+1,1) D1<0, -2a+1<0, -2a<-1, a>1/2, нет решений; 2) D1=0, a=1/2, нет решений; 3) D1>0, a<1/2,t1=- (-a) -√ (-2a+1)=a-√ (1-2a) ,t2=- (-a)+√ (-2a+1)=a+√ (1-2a) ,a-√ (1-2a) a-√ (1-2a) , (система) {sin3x1,-√ (1-2a) >1-a, √ (1-2a) 0, 1-2a1, a^2>0; — нет решений (т.е. при любом а a-√ (1-2a) ≤1, и неравенство sin3x>a-√ (1-2a) имеет решения); 3,2) a+√ (1-2a) <-1,√ (1-2a) <-a-1,{1-2a≥0, -a-1>0, 1-2a0; {a≤1/2, a<-1, a (a+4) >0; a<-4 — неравенство sin3x

Знаете ответ?


Есть интересный вопрос? Задайте его нашему сообществу, у нас наверняка найдется ответ!
Делитесь опытом и знаниями, зарабатывайте награды и репутацию, заводите новых интересных друзей!
Задавайте интересные вопросы, давайте качественные ответы и зарабатывайте деньги. Подробнее...