48

Все целые числа от 1 до 73 выписаны в ряд так, что каждое, начиная со второго…

02 февраля 2022

Все целые числа от 1 до 73 выписаны в ряд так, что каждое, начиная со второго является делителем суммы всех предыдущих чисел. А) может ли на последнем местестоять 5? Б) какие числа могут быть на последнем месте? В) какие числа могут быть на третьем месте?

категория: математика



79

Наибольший общий делитель Общий делитель. Наибольший общий делитель. Общим делителем нескольких чисел называется число, которое является делите-лем каждого из них. Например, числа 36, 60, 42 имеют общие делители 2, 3 и 6. Среди всех общих делителей всегда есть наибольший, в данном случае это 6. Это и есть наибольший общий делитель (НОД). Чтобы найти наибольший общий делитель (НОД) нескольких чисел надо: 1) представить каждое число как произведение его простых множителей, например: 360=2 · 2 · 2 · 3 · 3 · 5 , 2) записать степени всех простых множителей: 360=2 · 2 · 2 · 3 · 3 · 5=23 · 32 · 51, 3) выписать все общие делители (множители) этих чисел; 4) выбрать наименьшую степень каждого из них, встретившуюся во всех произведениях; 5) перемножить эти степени. П р и м е р. Найти НОД чисел: 168, 180 и 3024. Р е ш е н и е. 168=2 · 2 · 2 · 3 · 7=23 · 31 · 71 , 180=2 · 2 · 3 · 3 · 5=22 · 32 · 51 , 3024=2 · 2 · 2 · 2 · 3 · 3 · 3 · 7=24 · 33 · 71. Выпишем наименьшие степени общих делителей 2 и 3 и перемножим их: НОД=22 · 31=12. Наименьшее общее кратное Общее кратное. Наименьшее общее кратное. Общим кратным нескольких чисел называется число, которое делится на каждое из этих чисел. Например, числа 9, 18 и 45 имеют общее кратное 180. Но 90 и 360 – тоже их общие кратные. Среди всех общих кратных всегда есть наименьшее, в данном случае это 90. Это число называется наименьшим общим кратным (НОК). Чтобы найти наименьшее общее кратное (НОК) нескольких чисел надо: 1) представить каждое число как произведение его простых множителей, например: 504=2 · 2 · 2 · 3 · 3 · 7 , 2) записать степени всех простых множителей: 504=2 · 2 · 2 · 3 · 3 · 7=23 · 32 · 71, 3) выписать все простые делители (множители) каждого из этих чисел; 4) выбрать наибольшую степень каждого из них, встретившуюся во всех разложениях этих чисел; 5) перемножить эти степени. П р и м е р. Найти НОК чисел: 168, 180 и 3024. Р е ш е н и е. 168=2 · 2 · 2 · 3 · 7=23 · 31 · 71 , 180=2 · 2 · 3 · 3 · 5=22 · 32 · 51 , 3024=2 · 2 · 2 · 2 · 3 · 3 · 3 · 7=24 · 33 · 71. Выписываем наибольшие степени всех простых делителей и перемножаем их: НОК=24 · 33 · 51 · 71=15120 .

Знаете ответ?


Есть интересный вопрос? Задайте его нашему сообществу, у нас наверняка найдется ответ!
Делитесь опытом и знаниями, зарабатывайте награды и репутацию, заводите новых интересных друзей!
Задавайте интересные вопросы, давайте качественные ответы и зарабатывайте деньги. Подробнее...