Осева я симме три я — тип симметрии, имеющий несколько отличающихся определения: Отражательная симметрия. В евклидовой геометрии осевая симметрия — вид движения (зеркального отражения), при котором множеством неподвижных точекявляется прямая, называемая осью симметрии, а любой другой точке соответствует точка, находящаяся на том же расстоянии от оси симметрии, и лежащая на одной прямой с исходной точкой и их общей проекцией на ось симметрии. Например, плоская фигура прямоугольник в пространстве осесимметрична и имеет 3 оси симметрии (две — в плоскости фигуры), если это не квадрат. Вращательная симметрия. В естественных науках под осевой симметрией понимают вращательную симметрию (другие термины — радиальная, аксиальная, лучевая симметрии) относительно поворотов вокруг прямой. При этом тело (фигуру, задачу, организм) называют осесимметричными, если они переходят в себя прилюбом (например, малом) повороте вокруг этой прямой. В этом случае, прямоугольник не будет осесимметричным телом, но, например, конус будет. Применительно к плоскости эти два вида симметрии совпадают (считаем, что ось тоже принадлежит этой плоскости). Иногда вводят также (осевую) симметрию некоторого порядка: Осевая симметрия n-го порядка — симметричность относительно поворотов на угол 360°/n вокруг какой-либо оси. Описывается группой Zn. Зеркально поворотная осевая симметрия n-го порядка — поворот на 360°/n и отражение в плоскости, перпендикулярной данной оси. Тогда симметрия в первом смысле (см. Выше) является осевой симметрией второго порядка, а во втором — ∞-го порядка, так как поворот на любой сколь угодно малый угол приводит к совмещению фигуры с самой собой. Примеры: шар, цилиндр, конус. Оси симметрии 2-го, 3-го, 4-го, 6-го и даже 5-го порядка (кристаллы с непериодическим пространственным расположением атомов (мозаика Пенроуза) можно наблюдать на примере кристаллов. Оси симметрии порядка выше 2-го называются осями симметрии высшего порядка.