39

Докажите, что любая трапеция, вписанная в окружность, равнобедренная;

07 мая 2023

Докажите, что любая трапеция, вписанная в окружность, равнобедренная;

категория: геометрия



59

Параллельные прямые отсекают в окружности равные дуги, которые соответствуют равным хордам. Это все. Можно объяснить, почему там равные дуги — равны накрест лежащие внутренние углы при этих параллельных (основаниях) и диагонали трапеции. Значит равны дуги, на которые они опираются. А вписанный угол опирающийся на дугу измеряется половиной дуги, потому что его можно разделить (или дополнить) диаметром, и каждый из получившихся уголов является углом между диаметром и хордой, и соединяя центр с концом хорды, мы получаем равнобедренный треугольник, у которого 2 угола при основании равны исходному, а центральный угол будет внешним, равным их сумме, то есть центральный угол в 2 раза больше вписанного. Раз это верно для угла между любой хордой и диаметром (имеющими общий конец), то верно вообще для любого угла.

Знаете ответ?


Есть интересный вопрос? Задайте его нашему сообществу, у нас наверняка найдется ответ!
Делитесь опытом и знаниями, зарабатывайте награды и репутацию, заводите новых интересных друзей!
Задавайте интересные вопросы, давайте качественные ответы и зарабатывайте деньги. Подробнее...