63

Найдите точку минимума функции y=x3-2x2+x-2

01 июля 2024

Найдите точку минимума функции y=x3-2x2+x-2

категория: алгебра



40

Для начала найдем производную функции: y=3x^2-4x+1, затем полученнуб производную прировняем к нулю, для того чтобы найти экстремумы функции: 3x^2-4x+1=0 решаем квадратное уравнение через DD=b^2-4ac=(-4) ^2-4*3*1=16-12=4=2^2 отсюда находим корни уравнения: x1=1/3 и x2=1 строим числовую прямую и отмечаем на ней полученные точки, затем подставляем полученные корни (1/3 и 1) в саму производную и решаем. Выясняется, что точкой минимума, т.е. точка где производная переходит от — к + является 1. Ответ: xmin=1

Знаете ответ?


Есть интересный вопрос? Задайте его нашему сообществу, у нас наверняка найдется ответ!
Делитесь опытом и знаниями, зарабатывайте награды и репутацию, заводите новых интересных друзей!
Задавайте интересные вопросы, давайте качественные ответы и зарабатывайте деньги. Подробнее...